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Joachim L. Grenestedt 
Mechanical Engineering and Mechanics 
P.C. Rossin College of Engineering and Applied Science 
Lehigh University 
Bethlehem, PA 18015, USA 

Abstract: The deformation of boat hull bottom panels during the initial phase of slamming is 

studied analytically using a linear elastic Euler-Bemoulli beam as a representation of the cross 

section of a bottom panel. The slamming pressure is modeled as a high-intensity peak followed by 

a lower constant pressure, traveling at constant speed along the beam. The problem is solved 

using a Fourier sine integral transformation in space and a Laplace-Carson integral transformation 

in time. Deflection and bending moment as functions of time and position for different speeds, 

bending stiffnesses, etc. are given. In particular the effect of slamming load traveling speed on 

structural response of the simplified bottom structure is investigated. It is found that rather large 

deflections and bending moments are encountered at certain speeds of the pressure, which 

suggests that bottom panels may benefit from tailoring their stiffness and mass properties such 

that loads are reduced. This would vary with boat particulars and operation (deadrise angle, mass, 

speed, sea state, etc). The importance of the high-intensity pressure peak often encountered during 

slamming is also studied. It is seen that for relatively slow moving slamming loads the pressure 

peak has little influence. However, for faster moving loads its influence can be significant. 

Keywords: Bottom slamming; Initial phase; Euler-Bemoulli beam; Two-step load, analytical 

method 
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1. Introduction 

Some of the highest loads on high-speed boats are due to bottom slamming. Slamming pressures 

are very dynamic and vary significantly over the bottom. Typically slamming starts with a high- 

intensity pressure peak that travels rapidly over the bottom from the keel towards the chines. The 

pressure peak is usually followed by a lower and essentially constant pressure. The pressure peak 

magnitude and propagation speed depend heavily on the impact velocity and deadrise angle of the 

boat. Slamming peak pressures have been experimentally measured to reach 8 MPa or even more 

(e.g., Faltinsen [1]), which is close to the acoustic pressure (hammer pressure) for the vertical 

speeds studied. On the other hand current structural design criteria for high-speed craft treat 

slamming as static uniformly distributed pressures with considerably lower pressure magnitudes 

(e.g., DNV [2], ABS [3], Lloyds [4]). This raises the question whether the structures designed and 

manufactured by those criteria are conservative, over or under designed, or just plainly incorrectly 

designed. The present study tries to shed some light on this complex problem by analytically 

studying a simplified model of a bottom panel subjected to a non-uniform pressure distribution 

traveling at various speeds. More advanced studies, as well as correlation with experimentally 

measured slamming response using the Numerette research craft, are underway. 

Early analytic research on slamming was done by von Karman [5] using a momentum approach, 

and by Wagner [6] using two-dimensional non-viscous incompressible flow. Cointe and Armand 

[7] studied the problem of an impacting cylinder and considered nonlinearity of the local jet flow. 

Zhao and Faltinsen [8] and Faltinsen [9] improved the solution of Wagner using a boundary 

element method and indicated a superposition of asymptotic expansions of high pressure at the 

spray root and a following lower pressure distribution. Faltinsen [9, 13] reported that hydroelastic 

effects are mainly relevant for local impacts when the deadrise angle is small and the duration of 

the impact is shorter or comparable to the structure's natural period. A conformal mapping 

technique was used by Mei et al. [10] to study the impact pressure on a two-dimensional body. 

Wet deck slamming was studied theoretically by Faltinsen [11] using a hydroelastic beam model. 

An initial structural inertia phase and a subsequent free vibration phase were identified. An 

asymptotic theory showed that the maximum bending stresses are proportional to an effective 

drop velocity and are not sensitive to the curvature of the wave surface or where the waves hit the 

beam. 
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Simply stated, slamming appears to consist of an initial slamming load arriving phase followed by 

a vibration phase. In this paper the bottom response during the slamming load arriving phase is 

analytically studied. The boat bottom is modeled as a one-dimensional linear elastic Euler- 

Bemoulli beam. The slamming pressure is modeled as a high intensity peak followed by a lower 

constant pressure, traveling at constant speed along the beam. 

Fluid-structure interactions are at this time ignored, or simply included as a constant added-mass 

term. Air entrapment which may have a large influence at lower deadrise angles is also ignored. 

The deformation is assumed to be sufficiently small that linear-elastic beam theory is valid, and 

that the geometry of the deformed bottom is not significantly different from the undeformed one. 

The assumption that the load travels at constant speed across the beam in essence implies that the 

vertical velocity of the boat bottom is constant during the slamming event, which depending on 

boat particulars (geometry, mass, etc) may or may not be a reasonable assumption. The equations 

are solved by using a Fourier sine integral transformation in space and a Laplace-Carson integral 

transformation in time, as done by Fryba [12]. The structural response during the slamming load 

arriving phase is given. The effect of slamming load traveling speed on structural responses is 

presented. 

2. Simplified Analytical Model of Slamming, Two-Step Load on Beam 

Consider the system shown in Figure 1 in which a bottom panel is modeled as a simply supported 

Euler-Bemoulli beam subjected to the slamming load q(x,t) which moves with constant velocity c 

from one end to the other. The model may be reasonably realistic for bottom panels which are 

long relative to their width, as is common in boat bottoms. Simply supported edges were chosen 

as a reasonable approximation of the bottom panels of the Numerette research craft. Its bottom 

consists of ten sandwich panels whose cores taper off and vanish by the edges, resulting in a 

single skin "collar" along the perimeter of each panel. The thin single skin collar is considerably 

more compliant in bending than the thick sandwich, thus modeling the edges as simply supported 

is presumably a decent approximation. It may or may not be a feasible approximation for the 

edges of bottom panels in other boats. The deflection of the beam is w{x,f), where x(0<x<Z)is 
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the position within the beam and t (0<t <L/c) is time. In Figure 1, Z is the length of the beam 

and /, is the length of the high-intensity pressure peak. The analysis in this paper terminates at 

t=L/c when the pressure peak reaches the right end of the beam (corresponding to the slamming 

pressure reaching the chine of the boat). 

Qi 

qfot) 

92   ,. 

TT.M-nTTTTtTT 

h 

w(x,t) 

m 

Figure 1. Left: cross-section of boat during slamming, showing the moving slamming pressure q{x,t). Right: 

Simplified model where the bottom panel is represented by a beam and the slamming pressure q{x,t) as two constant 

pressures, qi and qj, traveling at a constant speed c. 

Using the Euler-Bernoulli beam assumptions the governing equation is 

;1d^t1+^dM^t1 = q^t) 

dx4 dr (i) 

where El is bending stiffness (assumed constant), q(x,t) is load per unit length, // is total mass 

(mass of beam plus some added mass of water) per unit length of the beam (also assumed 

constant). The added mass of a submerged bottom panel is usually assumed to correspond to the 

mass of a half cylinder of water with diameter L and length d (in the present case d is the width of 

the beam). The total added mass is thus pw7il}dl%. If it is assumed that this mass is evenly 

distributed along the length of the present beam, then the added mass per unit length becomes 

p^nhdlZ. This would be for a fully submerged panel, whereas at the beginning of the slamming 

event the bottom panel is essentially dry and there is no added mass term. For this reason a 
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constant A:e[0,l] was introduced, such that // = iu + kpw7rLdl%. For a fully submerged bottom 

panel 4=1, whereas for a dry panel A=0; however in the analysis below k is assumed constant 

during the whole slamming event (from the time the keel touches the water surface to the time 

when the slamming pressure reaches the chine). It may be plausible to believe that the two cases 

^=0 and k=\ in some sense bound the behavior of a bottom panel. 

In the present study the slamming load is simplified as a moving step load of the following form: 

q(x,t) = qx[\-Hix-ct)\-{qx~q2)[\-H{x-c{t-lxlc))\ (2) 

where q\ is the load per unit length of the initial load peak, ^2 is the load per unit length of the 

residual load following the peak, and H(x) is the Heaviside step function. 

fO        for   x < 0 

11        jor   x > 0 

Since equation (1) is linear, supeiposition applies and the problem can be solved in two parts. The 

first set of equations is 

ox at 

The corresponding boundary conditions and the initial conditions for equation (4) are 

w(0,0 = 0 w{L,t) = Q (5) 
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d2w(x,t) 

Dx2 
x=0 

d2w{x,t) 

dx2 = 0 
x=L 

and 

w{x,0) = 0 
dw(x, t) 

dt 
= 0 

(=0 

(6) 

The second set of equations is 

r,T5
4w(x,0      * d2w(x,t) 

El- —^—^ + // 
dx' dt' 

<ql-q2i\-H{x-c{t-lJc))\ (7) 

The corresponding boundary conditions and the initial conditions for equation (7) are 

w(0,0 = 0 w(40 = 0 (8) 

d2w{x,t) 

dx2 
x=0 

d2w{x,t) 

dx2 = 0 
x=L 

and 

wMK/c = 0 ^(x, /) 

a = 0 
/=/,/£ 

(9) 

If w(x,<) is the solution to the slamming problem, w^xj) is the solution to eqs. (4-6) and w2{x,t) 

is the solution to eqs. (7-9), then 
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w(x, t) - Wj (x, t) + w2 (JC, t) (10) 

3. Nondimensionalization of the Problem 

In order to reduce the number of parameters the following dimensionless quantities are introduced 

-    x 
x = — 

L 1     L 

—    w 
w = — 

L 

-    L3 

q = —q 
El 

t = t 

c = cn 
El 

M{x,t)=—M(x,t) 
El (11) 

The dimensionless versions of eqs. (4-6) are 

dx dt 

w(0,0 = 0 w(l,0 = 0 

(12) 

(13) 

d2w{x,t) 

dx x=0 

d2w{x,t) 

dx 
= 0 

X-I 

and 

w(x,0) = 0 
9w(x, /) 

dt 
= 0 

r=0 

(14) 

while the dimensionless versions of eqs. (7-9) are 

d*w(x,t)    d2w{x,t)       -    - .r,    _  -   - -   -  .-J  ^2+       ■V' = -(g1-^2)[l-//(x-c(/-/1/c))J 
ax 5/ 

(15) 
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w(0,0 = 0 

d2w(x,t) 

dx 
= 0 

x=0 

a2w(x,o 

dx 
= 0 

x=\ 

(16) 

and 

w(x,t) 
t=hlc 

dw{x, t) 

dt 
= o 

t-tile 

(17) 

4. Solutions to the Equations 

For equations (12-14), the solution w\{x,t) can be obtained by using a Fourier sine integral 

transformation in space and a Laplace-Carson integral transformation in time [12]. Multiplying 

eq. (12) by smjnx, where/ is an integer, and integrating with respect to x between 0 and 1, 

using the boundary conditions (13) and relations (A1-A3) in Appendix A, the following is 

obtained: 

fn*WU,t) + W(J>t) =4i-a- cosjnct)      j = 1,2,3 • 
jx 

(18) 

where W{j,t) is the Fourier sine integral transform of the original w\{x,t), 

W{j, t)=\wi (x, t) sin jnxdx        j = 1,2,3 • (19) 
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m (x, t) = 2^ W{j, t) sin JKX (20) 

Set a = j K   and b = y^c, then equation (18) can be reorganized as follows 

WU,'t) + a2W{j,'t) = ^{\-cosbt)      7=1,2,3. (21) 

Next we apply the Laplace-Carson integral transformation on equation (21), i.e. multiply each 

term in eq. (21) by e~s', integrate with respect to t between 0 and oo, and multiply by s which is 

a variable in the complex plane. Using the initial conditions (14) and relations (B1-B3) in 

Appendix B, we can get 

W\j,s)=^ 
jn{s2+a2){s2+b2) 

(22) 

where W\j,s) is the Laplace-Carson transform of the original W(J,t), 

(23) 

Applying the inverse Laplace-Carson transformation on equation (22), using relations (B2) (B4), 

the solution is obtained. 

J n 
1+—5 7(Z>2 cosat-a2 cosbt) 

a —b 
(24) 
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This solution is not valid if a=b, i.e. when j^nc. However, this can be avoided by a slight 

change in c, and therefore will be tacitly ignored. 

With equation (20) and (24), we shall get the solution to eqs. (12-14), where 0<t<\/c and 

0<x<l, 

^      M J 
1 + — r- \b2 cos at-a2 cos btj 

a  —b 
sinJTrx,   a = j TC ,b = J7tc (25) 

The solution to the second set of equations, eqs. (15-17), is obtained by a time shift and scaling. 

W2{x,t) = - 

0 

2(<72-<7i)v 1 

T5   hr- 
1+-J Tib2cosa(t--±-) 

a -b c 

2 -    h -a cosb(t-=) 
c 

sin^/TX 

(0<r<i-) 
c 

c c 

(26) 

Thus, the final solution for a moving step load is 

w(x,t) = ' 

2^,^ 1 f          1      / 2        -     2        -\ 
—f-2u~ * + ~ Yv cosat~a cosbtj 

71   ;=i J 

a2-b2 

[b2cosat-a2cosbtj 

smj?rx 

42 +    , 
a'-b2 

11-12 
f 

2       1,2 a-b 
b2cosa(t-=-)-a2 cosb(t-^) h 

c 
SmjTTX 

{0<t<t) 
c 

c c 

(27) 

With the deflection known other quantities of interest, like the bending moment or the shear 

forces in the beam, are easily obtained. In particular, the bending moment is 
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M = 
dx2 

d2w(x,t) 

dx 
(28) 

and thus 

M(x,t) = 

U 2q. 

*3 Uf 

n   H J 

i ^[p2 cosat-a2 cosbtj 
a'-b* 

smjTix 

qi+V^ 
[b2 cosat ~a2 cosbtj 

^1-^2 
r 

a2-b2 b cosa{t-=)-ci cosb(t-=) 
c c 

smjnx 

(o<^<i) 
c 

,h    -    L (=<t<=) 
c c 

(29) 

In the next section a slightly different pressure profile will be discussed. 

5. Alternative Pressure Distribution, the Point-Step Load 

As mentioned measurements of bottom pressures in high-speed boats indicate that there is a high 

pressure peak spreading rapidly over the bottom, followed by a considerably lower pressure over 

a large area of the bottom. The pressure peak was represented by the pressure (times width) qi 

above. The importance of the pressure peak can be further studied by representing it by a moving 

point-load, FD, followed by a constant pressure. This will be called the "Point-Step Load" in the 

remainder of the paper. The normalized slamming load q(x,t) can then be expressed as 

q(x,t) = FoSyx - ctj+ qr[l - H(x - ct)] (30) 

where S{x) is a Dirac pulse and ql. is a residual pressure following the point load. In order to 

compare this load with the two-step load, the point-load load is set equal to the total load of the 
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initial peak, and the total load when the slamming reaches the right end of the beam is made the 

same for the two different loads; thus 

FD =q]li 

The governing equation for this load is 

^^(i-M (31) 

54w/(x,0    d2wi(x,t)    -   J-   —\   - r    r  -   — 1 
 z^- + rp-^ = FD5[X -ct)+qr\- H(x - ct)\ 

dx dt 
(32) 

together with the boundary and initial conditions, eqs. (13-14). The problem is solved in a similar 

fashion as for the two-step load, and with the help of (A4), (B4) and (B5) the solution becomes: 

wi (x, t) = 27rFDC^i 
./ 

^a2-b2 

1 
>\ 

—sinbt—sin at 
b a 

smjTrx 

+^Z ^   MJ 
1 + —^ r- [b2 cos at-a2 cos btj 

a —b 
siny^x 

(33) 

J~ 
M,{x,t) = 2n'FDcYJ- 2 

j=\ a — b 

1 \ 
— sinbt smat 
b a j 

smjnx 

+ -^2]— 1+— ^(62cosar-a2cosZtf) 
^       M J a-b 

siny^x 
(34) 

With the definition of the point load and the residual pressure of eq. (31), the total load at the time 

the slamming reaches the right end of the beam is the same for this load as for the two-step load. 

However, at any other time the total force is higher for the present pressure distribution. 
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6 Convergence and Error Analysis 

In this section the errors introduced by terminating the infinite series solutions of eqs. (27) and 

(29) are studied. With some rearrangement of eq. (25) the following is obtained. 

Wi(x A <■ 
2q1 

2ql 

n5 

^ 1 
Z..5 + 
y=i J 

V1 , 

2^c CO 

7, 
7=1 

y=i 

1 
+ 

+ 

2*7, 
^3 

2* 
^3 

S 
7=1 

t 
7=1 

1 
,V|- 

< 

;r5 

i 

-2 
c 

1 

-2 

2ql \ + c 

TV5 4 
^3 

CO          1 

-2 
c / /(/V -2 

TT5 
/=Ji J 

(35) 

where /i is an integer equal or greater than Vl + c  In (soj2fr2 -c  >1). Since a/7-series with 

p>\ is convergent, the solution wi(x,r) is also convergent (except if j = TTC , which as mentioned 

previously is disregarded). 

For numerical calculations a truncated series is used, 

2q j.-i 

^(x,o=^E4 
«•    y=i7" 

1 + ^ , ■j2cos(3^-a2cos6n 
a2-Z)2V ; siny^x (36) 

with an error limited by 

\error\, = 2qLf± 
*5 hf 1+—^ ^(62cosa^-a2cos6/J 

a'-b 

< 
2q M 

smjnx 

n j-Ji J 

■ + 
2ql 

K 

CO        i 

S-J\ J 

(37) 
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Since 

W5    i*5        4(7,-I)4 faf    l^        2{j,-\)2 (38) 

the error estimate becomes 

\error\   < rjlg] 
2;r5(j1-l)4 

+ 
^(J, -I)3 (39) 

Similarly, for the bending moment Mi = _2'    , we can get the following result 
dx 

—. --     2q,-i£ 1 
71      7=1 7 

1 +— j-(Z)2 cosa/^ - a2 cosft/j 
a'-* 

siny^-x (40) 

(.W where J2 is an integer equal or greater than 1 + V1 + 4;r2 c    12K
2
 . An upper bound of the error of 

the bending moment M\{x,t) is 

lerroh   < 
**(j2-lf 

2qlc 

3^3(j2-l)3 
+ 2gi 

^2-1) 
(41) 
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7 Range of Parameters for Slamming 

Slamming calculations will in this paper be performed for parameters that are relevant for boats 

and ships. The speed that the slamming load travels over the bottom, c, can be estimated by 

c = ■ 
VTT 1 VTT 

2tanj3  cos/?     2sin/? 
(42) 

where V is the vertical velocity of a 2D wedge dropped in water and /? is the deadrise angle of 

the bottom, e.g., Faltinsen [13]. It will be assumed that deadrise angles of the boats of interest are 

in the range 5° to 45°, and the vertical velocity in the range 1 m/s to 10 m/s. Drop tests with these 

parameters have been performed in [1], [14] and [16]. Using these values the speed that the 

slamming load travels over the bottom, c, is estimated by eq. [42] to vary from 2 m/s to 200 m/s. 

Peak pressure and duration were deduced from among other sources the drop tests of [1], [14] and 

[16]. The peak pressure range and peak duration in Table 1 appears to cover the majority of such 

tests. The ratio of pi/p2 is naturally not clearly defined from experiments since real slamming 

loads differs from the two-step load presently assumed. However, for the purpose of presenting 

results the pressure ration/pa was assumed to be in the range of 2-20. 

Table 1. Range of parameters studied 

Parameters Traveling 
load speed c 

[m/s] 

Peak pressure 

[kPa] 

ratio of 

Pilpi 

Duration of 
slamming load peak 

[ms] 

Value Ranges 2-200 10-8,000 2-20 0.01-2 
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Regarding bottom stiffness, the range can be estimated to vary from that of a very soft bottom 

panel such as a one meter wide 3 mm thick aluminum plate (£=70 GPa, density 2700 kg/m3), to a 

stiff bottom such as a one meter wide sandwich panel with two 15 mm thick carbon fiber skins 

(£■=100 GPa, density 1500 kg/m3) on each side of a 70 mm thick high density foam core 

(negligible stiffness, density 250 kg/m3). This results in a bending stiffness {El) ratio of the soft 

bottom to the stiff bottom of approximately 3xl0~5. With this ratio, the ranges of interest of the 

dimensionless parameters given in Table 2 are obtained (from eq. (11)). The length l\ was 

estimated as traveling load speed times duration of the pressure peak, resulting in the normalized 

length U of Table 2 if the length of the beam is 1 m. 

Table 2. Range of interest of the dimensionless parameters 

Parameters 
Traveling 
load speed 

c 

Peak pressure Ratio of 

qxlq2 

Peak load length 

h 

Value Ranges 0.01-320 lO'MO5 2-20 2xl0-5-0.4 

In the next section dynamic deflection w and bending moment M will be presented. They will 

be normalized by the maximum static deflection Wms and the maximum static bending moment 

Mm that result if the beam is statically subjected to a two-step load with the same properties as 

the dynamic load (i.e., as in Figure 1). Let x = a be the right edge of the pressure pulse qx. Then 

wms =   max.  w 
Q<a<\fi<x<\ 

Mms =   max_  M, 
0<O<1,0<J<1 

(43) 
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where w* and Ms are the normalized static deflection and bending moment, respectively; please 

see Appendix C for more details. 

8 Results and Discussion 

A sample calculation will reveal some of the features of dynamically loaded bottom panels. 

Consider a simply supported beam subjected to a moving slamming load with the following 

-       -   - - -     1    1    3 1 
parameters: c = 5,qxlq2 -5, h =0.01. The deflections at four instances (7 = —,—,-^ and =) 

4c 2c 4c c 

are shown in Figure 2, and the bending moments are shown in Figure 3. The vertical axes 

represent the deflection ratio wlwms and the bending moment ratio M/Mm, respectively. In this 

example the Point-Step Load predicts slightly higher deflection and bending moment of the beam 

in most instances, as would be expected. In this case the maximum deflection reaches 

approximately 55% of the maximum static deflection. The fact that the load is moving thus 

reduced the maximum deflection in this case. This is not generally true as will be seen shortly. 
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Figure 2. Deflection ratio VflyVms  of the beam under moving slamming load 

with c = 5 , q1/g2=5,li= 0.01 
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Figure 3. Bending moment ratio MI Mms of the beam under moving slamming load 

with c = 5 , g1/q2=5,li =0.01 

The effects of the slamming load traveling speed on structural responses are sketched in Figures 4 

and 5 when /i =0.01. They show the maximum absolute value of the dynamic deflection and 

bending moment, 

Wmd -   .max.  w 
0<l<\/cfi<x<l 

Mmd =  .max. 
0<r<l/c,0<x<l 

M (44) 

normalized by the maximum static deflection, Wms, and the maximum static bending moment, 

Mms, respectively. Note that wmd and Mn,d depend on c, while Wms and Mm do not. The 

results in Figures 4 and 5 demonstrate an important phenomenon of the structural response during 

the slamming load arriving phase. When the dimensionless slamming load moving speed is 
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relatively low, the maximum dynamic deflection and moment are close to their static 

counterparts, as expected. However, for the present case with /i = 0.01, when c increases to 

around 2 the maximum dynamic deflection is approximately 50% higher than the maximum static 

deflection. The same is true for the bending moment, the dynamic bending moment is 

approximately 50% higher than the static one. There is a form of resonance occurring in the 

structure. Considerable vibrations are occurring during the slamming load arriving phase when c 

is relatively low. From equations (1) and (8) the eigenfrequencies of a simply supported Euler- 

Bemoulli beam can be easily found: o)i =—— l—^,(i = 1,2,3 •••). If we define a characteristic 
L    }jfi 

velocity as cj = ■—'-, then the dimensionless characteristic velocity will be c, = . The first 
ITT 2 

three dimensionless characteristic velocities are 1.6, 6.3 and 14.1.   The two lower graphs in 

Figures 4 and 5 indicate that when /i = 0.01 the most severe structural response occurs when the 

propagation speed c is slightly higher than the first characteristic velocity. Faltinsen [11] also 

pointed out that maximum strains occur during the free vibration phase and mainly the lowest 

eigenmode is of importance at the time scale when maximum strains occur. 

Presumably due to inertia effects, at higher propagation speed c the maximum deflection and 

bending moment. Wad and Mmd, decrease rapidly. When c is larger than the third characteristic 

velocity, 14.1, the maximum structure response ratios, Wmd/Wm and Mmd/Mm, are rather 

small. This is referred to as the inertia phase by Faltinsen [11], and implies that the slamming 

force is essentially balanced by structural inertia forces. After the inertia phase, the structure starts 

to vibrate with an initial velocity obtained at the end of the inertia phase. For c larger than 40, the 

maximum dynamic deflection and bending moment at the end of the slamming load arriving 

phase is less than 10% of the corresponding maximum static values. 

Some effect of varying the peak pressure ratio, q1/q2, is also illustrated in Figures 4 and 5. With 

11 = 0.01, increasing the pressure ratio from 1 to 20 leads to higher deflection and bending 
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moment ratios, Wmd/Wm and Mn,d I Mm. In other words, a slamming load with the same peak 

pressure but higher pressure ratio will result in a more severe structural response compared with 

the corresponding static response. 
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Figure 4. Maximum deflection ratio versus 
speed of the slamming load for five different 

pressure ratios  ^/^ when/i =0.01. The 

lower graph is a zoomed-in version of the 
upper graph. 

Figure 5. Maximum bending moment ratio 
versus speed of the slamming load for five 

different pressure ratios qx I q2 when 

h = 0.01. The lower graph is a zoomed-in 
version of the upper graph. 
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An effect of peak load length, h, is shown in Figures 6 and 7 for ql/q2=5. Three different  /i 

were used, 0.001, 0.01 and 0.1. The deflections and bending moments were normalized by their 

static equivalents as before in this paper. The figures indicate that both the normalized maximum 

deflection and dynamic bending moment increase with increasing peak load length, /i. Hence, 

slamming load with long duration of the peak pressure appears to generate more deflection and 

bending moment compared with the static equivalents. 

16     18     20 

Figure 6. Maximum deflection ratio versus 
speed of the slamming load for three different 

h, when ql Iq2 =5 

iq_   12     14     16     18     20 
C 

Figure 7. Maximum bending moment ratio 
versus speed of the slamming load for three 

different l\, when q^lQj ~ ^ 

Some further insight into slamming can be gained by studying the influence of the total force of 

the initial peak pressure. The Point-Step load outlined previously was used for this purpose, i.e., a 

point load FD preceding a constant pressure <?r. The maximum dynamic deflection and the 

maximum dynamic bending moment were calculated for different point loads FD- In this case the 

deflection was normalized by the static deflection of a beam loaded by a distributed pressure qr 

only, i.e., by ws = 5qrl?>M . Likewise, the dynamic bending moment was normalized by 

Ms = qr 1% ■ The results are presented in Figures 8 and 9 where deflection and bending moment 

are plotted versus FD I qrL. 
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Figure 8. Maximum deflection versus point 
force ratio, normalized by maximum 
deflection from static evenly distributed load 
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Figure 9. Maximum bending moment versus 
point force ratio, normalized by maximum 
moment from static evenly distributed load qr. 

Figure 8 and 9 show that the maximum deflection and bending moment of the structure increase 

monotonously with increasing point force ratio, FD I qrL, as expected. Further, as previously seen 

when c is close to the first characteristic velocity, 1.6, the maximum deflection and the maximum 

bending moment of the structure are the largest. After this high deflection and high bending 

moment phase, Wmd and Mmd decrease with increasing speed of the slamming load. Further, the 

figures indicate that reasonably small point loads have only little effect on the structural response 

when the slamming load travels slowly. For example, the increase in deflection and bending 

moment is just a few percent (relative to Ws and Ms) for FD IqrL = 0.1 and c = 0.1 or c = 1. 

However, at higher speeds, such as  c = 2 or c = 5, the increase is quite considerable. For c = 2 

the increase in deflection and bending moment over ws and Ms is approximately 12 % while for 

c = 5 the deflection increased 31% and the bending moment 38% in spite of the fact that the total 

load is only 10 % higher because of the point load. 
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9 Conclusions 

The initial phase of slamming was studied using a simplified beam model subjected to moving 

loads. At slow speed of the moving load the maximum dynamic deflection and the maximum 

dynamic bending moment do not differ much from their static counterparts, but when the speed 

approaches a characteristic speed of the panel the maximum deflection and bending moment 

increase on the order of 50 %. At speeds above a few times the characteristic speed, the maximum 

deflection and bending moment decrease below the static values (during the initial phase under 

study). Both keep decreasing monotonically as the speed increases. This suggests that bottom 

panels could be tailored to avoid large deflections and bending moments. In particular panel 

stiffnesses could be avoided for which the characteristic speed of the panel is near the propagation 

speed of the slamming load. Granted, this may be difficult, or even impossible, to achieve for any 

speed and any sea state for a particular boat. Nevertheless, it may be possible to design a boat's 

bottom such that the effects of the most severe condition (speed, sea state) are reduced. It should 

further be noted that the speed and the pressure of the moving load depend on deadrise angle of 

the hull; for example reducing the deadrise angle would increase the speed of the slamming load 

(which may be beneficial) but also the pressure (which would not be beneficial). More analyzes 

using more refined models would be required to gain a better understanding of the potential of 

tailoring bottom panels for slamming. 

The leading edge of the slamming pressure is typically characterized by a high pressure peak. If 

the force in this peak is on the order of 10% of the total force on the bottom panel, then at slow 

slamming load propagation speeds (less than, say, half the characteristic speed of the panel) this 

pressure peak does not increase maximum deflection or maximum bending moment significantly. 

However, at higher speeds (on the order of three times the characteristic speed) the maximum 

deflection and maximum bending moment increase 30-40% due to this pressure peak (compared 

to the response from a static evenly distributed load with no pressure peak), which is very 

significant. 

24 (31) 



REFERENCES 
[I] Odd M. Faltinsen, Hydroelastic slamming, J. Mar. Sci. Tech., 5(2) (2000) 49-65. 

[2] Det Norske Veritas (DNV), Rules for High Speed, Light Craft and Naval Surface Craft, Pt.3 

Ch.l Sec.2pp. 14,July2012. 

[3] American Bureau of Shipping (ABS), Rules for Building and Classing High-Speed Craft, Pt. 

3 Ch.2Sec.2 pp. 57,2013. 

[4] Germanischer Lloyd (GL), Rules & Guidelines, I-Pt.3 Ch.l pp. 3-17, 2012. 

[5] Von Karman, The impact on seaplane floats during landing. Technical report 321,NACA, 

(1929). 

[6] Wagner H, Uber stoss und gleitvorgange an der oberflache von flussigkeiten, ZAMM 12 

(1932) 193-215. 

[7] Cointe R., Armand J., Hydrodynamic impact analysis of a cylinder, ASME, J. Offshore Mech. 

Arct. Eng., 109 (1987) 237-243. 

[8] Zhao R., Odd M. Faltinsen, Water entry of two-dimensional bodies, J. Fluid. Mech. 246 

(1993) 593-612. 

[9] Odd M. Faltinsen, Water entry of a wedge by hydroelastic orthotropic plate theory, J. Ship 

Res., 43 (1999) 180-193. 

[10] Mei X., Lui Y., Yue D. K. P., On the water impact of general two-dimensional sections, 

Appl. Ocean Res., 21 (1999) 1-15. 

[II] Odd M. Faltinsen, The effect of hydroelasticity on ship slamming, Phil. Trans. R. Soc. A., 

355(1997)1-17. 

[12] L. Fryba, Vibration of Solids and Structures under Moving Loads, 3rd edition, Telford, 1999. 

[13] Odd M. Faltinsen, Hydrodynamics of High-Speed Marine Vehicles, Cambridge University 

Press, New York, 2005, pp.308-309. 

[14] B. Peseux, L. Gomet, B. Donguy, Hydrodynamic impact: Numerical and experimental 

investigations, J. Fluids. Struct. 21 (2005) 277-303. 

[15] Nabanita Datta, Hydroelastic response of marine structures to impact-induced vibrations. The 

University of Michigan, Dissertation, 2010. 

[16] G. K. Kapsenberg, Slamming of ships: where are we now?, Phil. Trans. R. Soc. A 369 (2011) 

2892-2919. 

25 (31) 



26 (31) 



Appendix A 

Fourier sine integral transformation 

Equation 

NO. 

Original Transform 

F(j) 

Al ^^- for /(0)=/(i) = /"(0) = /"(Z;) = 0 ^01 

A2 
1=1 1=1 

A3 b[l-H(x-a)] 
bL (,         fm^ 
— 1-cos-^— 
ja\           L ) 

A4 Six-a) sm-— 
L 

Appendix B 

Laplace-Carson integral transformation 

Equation 

NO. 

Original Transform 

F(.) 

Bl dVd) 
a2 s'F(s)-S'/(pt) s^y 

at 

B2 
(=1 

B3 l-cosat a2 

s2+a2 

B4 1 

a2b2 1+—5 ^(62cosa/-a2cos^) 
a -b 

1 

(s2+a2)(S
2+b2) 
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B5 1  . 
—smat 
a 

s 

s2+a2 
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Appendix C 

The dynamic moment is normalized by the maximum static moment. The maximum static 

moment within the beam depends on where the (slamming) load is applied. Introduce the distance 

a such that the right end of the load q\ in Figure 1 is located at x=a. In the dynamic case a=ct. The 

maximum static bending moment cannot occur for a<l\ since additional load will increase the 

maximum moment. For d>l\ the bending moment in a beam that is statically loaded as in Figure 1 

is 

q2x
1     [ifq^ -2al1ql +2Ll1ql -a

2q2 +2allq2 --/1
2<72 +2Laq2 -2Lllq2pc 

2 2L ' 
qlx

2     [l2ql -2allqx +2Laql -a
2q2 +201^2 -ifq2jx    [a-^fyq^^ ~q2) 

H —     ,    a-lx <x<a M = 
f   2 

2L     \     / 2 

[lfql -2al1ql -a
2q2 +2allq2 -l

2q2pc    [l2q1 -2allql -a
2q2 +2alxq2 -/1

2^2) 

21 
a<x<L 

The maximum moment can occur either when a=l\, when a=L, or when l\<a<L. In either case, 

since M(0)=M(Z,)=0 and Mand its slope are continuous, the maximum moment will be found 

where dM/dx:=0. The three different cases are: 

Case 1, a=li 

Ml=- 

qxx
2 | (2Z/, -l^x 

0 < x < /j 
2 2L 

fc + ^L    ,   h<x<L 

2L        2 ' 

The maximum moment for this case is 

/1
2(2Z-/1)

2
?1 

ML. = 
8Z2 
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Case 2, li<a<L 

The maximum will be in the range Q<x<a since for x>a the derivative dM/dx is never zero. The 

maximum moment will be found in the range x<a-l\ if 

/, </, s 
aq^ - Lql - ag2 + Ja2qf - 2aLqf + L2qf - a2ql q2 + 2aLq1 q2 

and otherwise in the range a-li<x<a. The maximum moment is 

M2    = max 

(-/j (/, +2L)(?1 -q7)+a2q1 +2^ (qx -q2)-Lq2))2 

SL2q2 

if   /, </, 

\2al1q1 ~lfql +a2q2 -2al1q2 +lfq2j2al1ql -l
2q1 —4aLq1 +4L2ql +a2q2 -lal^j +l2q2) 

8z:2
?1 

if   /, >/ 

Case 3, a=Z 

The moment is 

M3 = 

g2^2     ifi9i -lUi+L2q2)x 
,   0<x<L-l1 

2 2L 
qlx

2    [l2ql -2Lllql +2L2ql -L
2q2 +2Lllq2 -l

2q2)x    [L-l1 ) (^j -q2) 
■+- 

2L 
,   L-l1 <x<L 

The maximum moment will be found where dM/dx=0, which is in the range x<L-l\ if 

/, < 
4q^Tq~2+\ 
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and otherwise in the range x>L-l\. The maximum moment is 

Ml 

fcfei -q2)+L2q2)
2 

SL2q2 

if    0</1 < 

((21/, -iflq.-q^+L'qJ 
Jqx lq2 +1 

81^, 
if    L>11 > 

4qjq~2+l 

Total 

The maximum moment is the maximum of M1, M2, and Ar, 

Mmj=max[MLx,ML,ML] 
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